THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050B Mathematical Analysis I (Fall 2016) Tutorial for 10 Nov

We adopt the following notations: Let $A \subseteq \mathbb{R}$ be nonempty, $c \in \mathbb{R}$ be a cluster point of A, and $f, g : A \to \mathbb{R}$ be a function.

- 1. (a) (Limits and continuity) With notations above, f is continuous at c if and only if $\lim_{x\to c} f(x)$ exists and is equal to f(c).
 - (b) (Sequential Criterion for continuity) With notations above, f is continuous at c if and only if for each sequence $(x_n) \subseteq A$ converging to c, we have

$$\lim_{n \to \infty} f(x_n) = f(c)$$

(c) (Cauchy criterion) With notations above, define the oscillation of f at c in a $\delta > 0$ neighbourhood as:

$$O_f^{\delta}(c) := \sup\{|f(x) - f(y)| : |x - c| < \delta, |y - c| < \delta\}$$

Show that f is continuous at c if and only if

$$\lim_{\delta \to 0^+} O_f^{\delta}(c) = 0$$

- 2. (a) (Computational Rules) Let f, g be as above, and suppose f, g are continuous at c. Then we have:
 - i. f + g is continuous at c.
 - ii. cf is continuous at c, for any $c \in \mathbb{R}$.
 - iii. fg is continuous at c.
 - iv. If in addition $f(c) \neq 0$, then $\frac{1}{f}$ is continuous at c.
 - (b) (Composition) Let $f : [a, b] \to [c, d]$, and $g : [c, d] \to \mathbb{R}$. Show that if f is continuous at $x_0 \in [a, b]$ and g is continuous at $f(x_0) \in [c, d]$, then $g \circ f : [a, b] \to \mathbb{R}$ is continuous at x_0 . Compare with the case of limits of functions.
- 3. Using the definition or the properties listed above, find the set of continuity points for each of the following functions:

(a)
$$f : \mathbb{R} \to \mathbb{R}, f$$
 is a polynomial.

(b)
$$f : \mathbb{R} \to \mathbb{R}, f(x) := \chi_{\mathbb{Q}}(x) := \begin{cases} 1, \text{ if } x \in \mathbb{Q} \\ 0, \text{ otherwise} \end{cases}$$

(c) $f : \mathbb{R} \to \mathbb{R}, f(x) := x\chi_{\mathbb{Q}}(x) := \begin{cases} x, \text{ if } x \in \mathbb{Q} \\ 0, \text{ otherwise} \end{cases}$

4. (Linear functions, Optional) Let $f : \mathbb{R} \to \mathbb{R}$ such that f(x+y) = f(x) + f(y) for each $x, y \in \mathbb{R}$. Further suppose there exists $x_0 \in \mathbb{R}$ at which f is continuous. Show that there exists a unique $c \in \mathbb{R}$ such that f(x) = cx for any $x \in \mathbb{R}$.