THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH2050B Mathematical Analysis I (Fall 2016)
 Tutorial for 10 Nov

We adopt the following notations: Let $A \subseteq \mathbb{R}$ be nonempty, $c \in \mathbb{R}$ be a cluster point of A, and $f, g: A \rightarrow \mathbb{R}$ be a function.

1. (a) (Limits and continuity) With notations above, f is continuous at c if and only if $\lim _{x \rightarrow c} f(x)$ exists and is equal to $f(c)$.
(b) (Sequential Criterion for continuity) With notations above, f is continuous at c if and only if for each sequence $\left(x_{n}\right) \subseteq A$ converging to c, we have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)
$$

(c) (Cauchy criterion) With notations above, define the oscillation of f at c in a $\delta>0$ neighbourhood as:

$$
O_{f}^{\delta}(c):=\sup \{|f(x)-f(y)|:|x-c|<\delta,|y-c|<\delta\}
$$

Show that f is continuous at c if and only if

$$
\lim _{\delta \rightarrow 0^{+}} O_{f}^{\delta}(c)=0
$$

2. (a) (Computational Rules) Let f, g be as above, and suppose f, g are continuous at c. Then we have:
i. $f+g$ is continuous at c.
ii. $c f$ is continuous at c, for any $c \in \mathbb{R}$.
iii. $f g$ is continuous at c.
iv. If in addition $f(c) \neq 0$, then $\frac{1}{f}$ is continuous at c.
(b) (Composition) Let $f:[a, b] \rightarrow[c, d]$, and $g:[c, d] \rightarrow \mathbb{R}$. Show that if f is continuous at $x_{0} \in[a, b]$ and g is continuous at $f\left(x_{0}\right) \in[c, d]$, then $g \circ f$: $[a, b] \rightarrow \mathbb{R}$ is continuous at x_{0}. Compare with the case of limits of functions.
3. Using the definition or the properties listed above, find the set of continuity points for each of the following functions:
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, f$ is a polynomial.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x):=\chi_{\mathbb{Q}}(x):=\left\{\begin{array}{l}1, \text { if } x \in \mathbb{Q} \\ 0, \text { otherwise }\end{array}\right.$
(c) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x):=x \chi_{\mathbb{Q}}(x):=\left\{\begin{array}{l}x, \text { if } x \in \mathbb{Q} \\ 0, \text { otherwise }\end{array}\right.$
4. (Linear functions, Optional) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y)=f(x)+f(y)$ for each $x, y \in \mathbb{R}$. Further suppose there exists $x_{0} \in \mathbb{R}$ at which f is continuous. Show that there exists a unique $c \in \mathbb{R}$ such that $f(x)=c x$ for any $x \in \mathbb{R}$.
